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SUMMARY

An enhanced version of our localized truncation error analysis with complex derivatives (LTEA−CD) a
posteriori approach to computing target element sizes for tidal, shallow water flow, LTEA+CD, is applied
to the Western North Atlantic Tidal model domain. The LTEA+CD method utilizes localized truncation
error estimates of the shallow water momentum equations and builds upon LTEA and LTEA−CD-based
techniques by including: (1) velocity fields from a nonlinear simulation with complete constituent forcing;
(2) spatially variable bottom stress; and (3) Coriolis force. Use of complex derivatives in this case results in
a simple truncation error expression, and the ability to compute localized truncation errors using difference
equations that employ only seven to eight computational points. The compact difference molecules allow
the computation of truncation error estimates and target element sizes throughout the domain, including
along the boundary; this fact, along with inclusion of locally variable bottom stress and Coriolis force,
constitute significant advancements beyond the capabilities of LTEA. The goal of LTEA+CD is to drive the
truncation error to a more uniform, domain-wide value by adjusting element sizes (we apply LTEA+CD
by re-meshing the entire domain, not by moving nodes). We find that LTEA+CD can produce a mesh
that is comprised of fewer nodes and elements than an initial high-resolution mesh while performing as
well as the initial mesh when considering the resynthesized tidal signals (elevations). Copyright q 2008
John Wiley & Sons, Ltd.
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238 D. M. PARRISH AND S. C. HAGEN

1. INTRODUCTION

The primary focus of this paper is to present an application of our new algorithm for computing
target element sizes for finite element meshes of oceanic and coastal tidal models. The research
presented herein is an extension of our earlier work [1] in which we developed and demonstrated
a new method for automatically estimating localized truncation error and target element sizes for
unstructured meshes.

A finite element model of a physical system requires a geometric description of the system in
the form of a mesh of interconnected nodes and elements. In general, the level of detail of the
mesh affects the accuracy and stability of the model. In this paper, we extend our new method for
generating meshing criteria for two-dimensional models of shallow, tidal flow by incorporating
spatially variable bottom stress and Coriolis force.

Existing methods of computing target element sizes for coastal areas leave room for improve-
ments. The a posteriori localized truncation error analysis (LTEA) [2–5] is more versatile than
other methods, such as the wavelength to grid size ratio [6, 7] and the topographic length scale
[8–10] because of its (LTEA’s) basis in the shallow water (momentum) equations. However, a major
disadvantage of LTEA is that in order to compute values of the localized truncation error—upon
which are based the target element sizes—a 9×9 finite difference (FD) molecule, centered at mesh
nodes, is applied in computing the derivative terms (up to fifth order) of the localized truncation
error estimate. Points in the FD molecule must lie in different elements of a linear triangular mesh
of the model from which localized truncation error is to be computed. This requirement results
in numerous cases where the FD molecule violates the mesh boundaries. These cases include all
boundary nodes and all nodes in the vicinity of the boundary. Therefore LTEA is suitable only for
applications where the mesh area is large in comparison to its boundary, that is nn/nb�1, where
nn is the number of nodes in the mesh and nb is the number of boundary nodes. Boundary shape
alone is not the determining factor; rather it is how that shape is discretized.

Therefore we developed an algorithm that all but eliminates the limitations imposed by the
FD molecule while maintaining the desirable qualities of LTEA, namely maintaining the basis
in localized truncation error of the momentum equations, calculable from the velocity field. We
achieve this by recasting the localized truncation error estimate in terms of complex derivatives
(�/�z instead of �/�x and �/�y, where z= x+ �̂y and the lateral coordinates of the mesh lie in
the x/y plane); hence we name the new method LTEA+CD. We use the plus sign to indicate
the inclusion of Coriolis force and locally variable bottom stress in the method, omitted from our
earlier LTEA−CD [1]. This allows the production of a truncated Taylor series (the mathematical
basis of LTEA), the zero to sixth-order (�6/�z6) terms of which are calculable using only seven
discrete points in a difference molecule, all of which may be located within the ‘valence shell’ of
elements surrounding a typical interior node in a linear triangular mesh. For cases where the node
is on the boundary, eight points may be applied to estimate the zero to seventh-order (�7/�z7)
terms. The extra point is needed in order to provide O[(�M)2] accuracy, where �M is the size of
a mesh element (units of length).

After developing the theory of and explaining the procedure for applying LTEA+CD, we apply
the method to the production of a new mesh for the Western North Atlantic Tidal (WNAT) model
domain.

In order to produce target element sizes, a nonlinear tidal simulation is executed with an initial
mesh. For ease of mesh generation, this could be a uniform mesh, but uniformity is not required;
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herein, we use an existing mesh. The LTEA+CD algorithm computes target element sizes from
model output; the target element sizes are linearly scaleable. It is up to the user to select the scale
factor; we select a value such that the resulting mesh would have adjacent elements that are no
more that a factor of two different in area. (We note briefly that the scale factor may also be
selected so as to produce a mesh having a certain number of nodes or elements, but we will not
discuss this further since this technique is not applied to the application presented herein.) Note
that were the flow field sufficiently known from field data, no simulation would be necessary in
order to compute the target element sizes. However, at this time, for most cases, flow fields must
be computed due the scarcity and unavailability of accurate, measurement-based data.

In a review by Greenberg et al. [11], several issues pertaining to mesh resolution and the
accuracy of coastal and ocean circulation models are examined. Based upon their review, it seems
that there are only about three quantitative relations (though many qualitative ones) that should
influence mesh resolution: the Courant number, (�t)(gh)1/2(�M)−1, where �t is the timestep,
g is the acceleration due to gravity, and h is bathymetric depth [12–16]; the topographic length
scale, h/‖∇h‖ [8–10]; and localized truncation error [3, 5, 17, 18], which requires the evaluation
of twenty derivative terms, up to the fifth order. Note that meshing according to the Courant
number or the topographic length scale would not incorporate bottom stress, and that LTEA, while
compatible with regionally varying bottom stress, is not applicable at the domain boundary.

Hagen et al. [4] developed LTEA first for one-dimensional problems and examined performance
on an idealized ocean domain. They experimented with different imposed maximum multiple of
change criteria in producing one-dimensional meshes from LTEA results. This concept of maximum
multiple of change is included in the present work, with modification. Hagen et al. [5] applied the
two-dimensional LTEA to a realistic Gulf of Mexico domain and demonstrated that LTEA may
be applied to produce a mesh that performs better compared to a mesh having approximately the
same number of nodes and elements, produced by targeting a specific Courant number.

The characteristic that distinguishes LTEA−CD from LTEA the most is the ability of LTEA−
CD to compute target element sizes at and near the boundary. This capability opens up new
possibilities in the field of meshing for coastal circulation problems.

Both LTEA and LTEA−CD are a posteriori methods, that is, they rely upon the results of a
simulation in order to compute optimal meshing requirements for future simulations. By ‘optimal’
we mean that the mesh is designed so as to distribute truncation error uniformly. In practice, the
distribution of truncation error does not become absolutely uniform, but is made more uniform.

From a theoretical perspective, the chief way in which LTEA−CD differs from LTEA is that
the localized truncation error estimate is computed using derivatives with respect to the complex
quantity z= x+ �̂y instead of x and y. The main consequence of this approach is the dramatic
simplification of the localized truncation error estimator, which translates into reduced computing
time and the introduction of the capability of computing the estimate at and near the boundary.

There are many examples of the application of complex derivatives to two-dimensional engi-
neering problems. Those new to complex derivatives may consult [19–24], which provide intro-
ductory material and example applications.

The remainder of this section sketches the development of our enhanced algorithm, LTEA+CD.
This is followed by a description of the application of LTEA+CD to the creation of a new mesh for
the WNAT model domain, which includes the Gulf of Mexico, the Caribbean Sea, and the portion
of the North Atlantic Ocean that lies west of the 60◦ W meridian (Figure 1; further discussion
surrounding Figure 1 is reserved until Section 6.2). In subsequent sections, we present details on
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240 D. M. PARRISH AND S. C. HAGEN

Figure 1. Boundaries used in the study: (a) ec2000v2d; (b) World Data Bank II 1:200 000
coastline for the western North Atlantic Tidal model domain; and (c) NEW. Note the differences
between the NEW and ec2000v2d boundaries in the extreme western Caribbean Sea, in the

north-central Gulf of Mexico, and Bahamas.

the development of two new meshes for the WNAT model domain by applying LTEA+CD. The
presentation of model results is reserved until after we have described each mesh and the processes
used for creating them, where we present them in a comparative fashion.

2. THEORY

We consider only localized truncation error of the harmonic, linearized shallow water momentum
equations (e.g. [3]). In Cartesian coordinates, the two-dimensional linearized shallow water
momentum equations are

�u
�t

+g
��

�x
+�u− f v=0 and

�v

�t
+g

��

�x
+�v+ f u=0

where u and v are depth-integrated velocities in the x- and y-directions, t is time, g is the
acceleration due to gravity, � is the deviation of the water surface from the geoid, � is bottom
stress, and f is the Coriolis parameter. These temporally dependent equations may be converted to
harmonic form by considering a single harmonic constituent of frequency �, from the tidal signal,
and substituting u= ûe�̂�t ,v= v̂e�̂�t , and �= �̂e�̂�t , yielding

(�̂�+�)û− f v̂+g
��̂

�x
=0 (1a)

and

(�̂�+�)v̂+ f û+g
��̂

�y
=0 (1b)
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Figure 2. An interior submesh (thick lines and dots) underlies the mesh (medium weight lines; portions
of seven elements are shown). The submesh consists of a central node surrounded by a ‘valence shell’ of

equilateral triangular elements. The central node coincides with a node on the interior of the mesh.

where �̂2=−1, û and v̂ are harmonic velocities in the x- and y-directions, and �̂ is harmonic
deviation of the water surface from the geoid.

The momentum equations, (1a) and (1b), are discretized spatially over a submesh using Galerkin,
linear triangular finite elements. We define a submesh to be a central node surrounded by a valence
shell of equilateral triangular elements, each consisting of three nodes, one of which is the central
node (Figure 2). The submesh does not necessarily coincide with the elements of a mesh on which
the solution is computed (note, for example, in Figure 2, we have drawn the submesh underlying
a mesh node having a valence of seven, one more than the submesh itself); hence we avoid the
term ‘stencil’. However, the central node is located on a node of the mesh from which the solution
is derived. The discrete form of the momentum equations, (1a) and (1b), are, in the x-direction,

�̂�+�

12

(
6∑
j=1

û j +6û0

)
+ g

6�
(2�̂1+ �̂2− �̂3−2�̂4− �̂5+ �̂6)=0 (2a)

and in the y-direction,

�̂�+�

12

(
6∑
j=1

v̂ j +6v̂0

)
+ g

2
√
3�

(�̂2+ �̂3− �̂5− �̂6)=0 (2b)

(Equations 6.22 and 6.23 in [2]), where the subscripts are the local indices of the central node (0)
and its neighbors (1 to 6, counter clockwise from the +x-axis, a different scheme than in Hagen
[2]) and � is the distance from the central node to that of any of its neighbors within the submesh
(Hagen [2] defined the distance between neighboring nodes as 2�, convenient when working in
x- and y-coordinates). Note that for the moment, we have dropped the Coriolis terms.
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242 D. M. PARRISH AND S. C. HAGEN

Departing further from Hagen [2], we develop an expression for truncation error that is based
upon an analysis in the complex plane. Let z= x+ �̂y. We place the origin of the complex plane
at a central node. The discrete momentum equations (2a) and (2b) may be expressed in terms of
f0∈{�̂0, û0, v̂0} and its derivatives f (k)

0 , k∈{0,1,2, . . .}, by substituting the complex Taylor series
for the f j ∈{�̂ j , û j , v̂ j }, i.e.

f j = f0+ � j

1! f (1)
0 + �2

j

2! f (2)
0 +·· ·+ �6

j

6! f (6)
0 +HOT (3)

where mod� j =�, � j =(x j −x0)+ �̂(y j − y0), j ∈{1,2, . . . ,6}, and HOT are the higher order
terms. Again, by substituting the complex Taylor series (Equation (3)) into the discrete momentum
Equations (2a) and (2b), and applying our chosen configuration of nodes and elements, the Taylor
series expansions of the discrete momentum equations become, after cancellation of terms, respec-
tively,

�̂�+�

1440
(1440û0+�6û(6)

0 )+ g

120
(120�̂(1)

0 +�4�̂(5)
0 )=0 (4a)

and

�̂�+�

1440
(1440v̂0+�6v̂

(6)
0 )+ �̂g

120
(120�(1)

0 −�4�(5)
0 )=0 (4b)

where we have dropped the HOT. We multiply Equation (4a) by �̂ and add the result to Equation
(4b), which yields

(�̂�+�)(�̂û0+ v̂0)+2�̂g�̂(1)
0 +�6 �̂�+�

1440
(�̂û(6)

0 + v̂
(6)
0 )=0 (5)

A localized truncation error estimator is determined by subtracting (1b) and �̂× (1a) from (5):

�̂ME=�6 �̂�+�

1440
(�̂û(6)

0 + v̂
(6)
0 ) (6)

The terms involving �̂ cancel through application of the chain rule and because �x/�z= 1
2 and

�y/�z=1/2�̂ (see, e.g. [25]).
We create a new algorithm, LTEA+CD, enhancing LTEA−CD by the inclusion of spatially

variable bottom stress and the Coriolis force. Linear Galerkin finite elements are again applied.
The corresponding truncation error expression is

�̂+
ME= �6

1440
[�(�̂v0− û0)+(�v̂)0+ �̂(�û0)− �̂( f v̂)0+( f û)0](6) (7)

The development of Equation (7) is the same as that of Equation (6), except that the Coriolis terms
are kept and that Equation (7) is linearized by considering the products involving � and f to vary
linearly over an element, rather than taking � to be constant and assuming f =0. Not making this
assumption would greatly increase the complexity of computing the derivative term. In addition,
inclusion of nonlinear terms would prevent the use of the harmonic form. In this paper, we prefer
the computational advantages of these assumptions to more mathematically rigorous approaches
that, in a preliminary assessment [1], produce the same end.
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INCORPORATING BOTTOM STRESS & CORIOLIS FORCE INTO UNSTRUCTURED MESHING 243

Figure 3. A boundary difference molecule (heavy dots; light dots included to illustrate shape only)
underlies the mesh (medium weight lines). The shape and orientation of the submesh allows for concave

boundaries. In this example, the central node of the boundary submesh is located bottom center.

For interior nodes, the derivative is calculated by a difference equation where the func-
tional values are interpolated onto a hexagonal difference molecule of seven points, identical to
the submesh described above, and the complex field is approximated by a complex polynomial.
For boundary nodes, the process is the same, except that the difference molecule is semi-circular in
shape, has eight points, and the central node lies on the midpoint of the semicircle (Figure 3). The
points of the boundary difference molecule lie along the semicircle at intervals of 30◦; an eighth
point is placed at the center of the semicircle. It is the compact nature of these difference molecules
that enables us to compute the derivative terms in Equation (7) at and near the domain boundary.

The discrete physics upon which the localized truncation error estimates are based are consis-
tent with the assumptions of the Advanced Circulation Model for Oceanic, Coastal, and Estu-
arine Waters-two dimensional depth integrated option (ADCIRC-2DDI version 42.06, henceforth
ADCIRC), applied herein. A brief description of ADCIRC is given in a previous article [26]; for
details, see [27, 28].

Target element sizes, �∗, are computed by rearranging Equation (7) into the form

�∗ =aD (8)

where a is an arbitrary scale factor and D is a deterministic factor. This is equivalent to selecting
a target value for �̂+

MR and solving for �. Note that different a’s could be chosen for different
regions of a model domain; for example, the area of interest may have a lower a than that of the
remainder of the domain. Herein, we apply a globally constant a for each mesh created.

3. APPLICATION OVERVIEW

In developing a new mesh for the WNAT model domain that includes variable bottom stress, our
first task is to estimate bottom stress. This is accomplished through the utilization of the results of
a simulation over an existing finite element mesh, ec2000v2d, that produces generally good results
[29]. Next, we apply LTEA+CD to the model results over ec2000v2d (velocity harmonics) and
corresponding bottom stresses so as to generate an intermediate mesh, INTR. Finally, we create
target element sizes from simulation results over INTR, construct the corresponding final mesh,
FIN, and run the model using it. The boundary for INTR is generated afresh and is applied in
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the creation of FIN. Simulation results (tidal elevation amplitudes and phases) are compared to
measurement-based tidal constituents from 147 stations. The results over ec2000v2d serve as a
benchmark.

Entire meshing is performed with SMS version 9.0 [30]. The INTR and FIN meshes are produced
nearly automatically from the target elements sizes established by LTEA+CD. The FIN mesh
was produced in a series of patches which were then ‘stitched’ together manually. Also, several
spurious elements appeared adjacent to the mainland boundary (in violation of the target element
sizes); these were eliminated by a manual, but largely systematic process. Finally, a few skinny
elements were eliminated manually. Manual editing required approximately 8 h for a proficient
SMS user (Parrish). Other than these noted exceptions, mesh construction was automatic.

4. MODEL PARAMETERS

All parameters are identical for all simulations, except for the meshes themselves, and for the open
boundary forcing, which, for INTR and FIN, is interpolated linearly from the boundary forcing
of the ec2000v2d simulation. The open boundary is forced with seven tidal elevation constituents
(Q1,O1,K1,N2,M2, S2, and K2). Tidal potential terms are included throughout the domain for
the same frequencies. A harmonic analysis is performed on the time series results with 23 tidal
constituents (Table I) at increments of 5min (300 s), over the last 45 days of simulated time.

Bottom stress is computed according to the hybrid quadratic friction formulation

�=C f min

[
1+

(
Hbreak

H

)�
]�/� √

u2+v2

H
(9)

in which � is the bottom stress, C f min = 0.0025, Hbreak=10.0m,H is the total water column depth,
�=10,�= 1

3 , and u and v are the depth-integrated velocities (x- and y-directions). A spatially
constant horizontal eddy viscosity of 5.0m2/s is applied. Advective terms are not included—note
that throughout most of the WNAT model domain, shallow water flow is weakly nonlinear. Wetting
and drying is employed with a minimum depth of 0.1m.

Each simulation is run for a simulated duration of 90 days using a time step of 4.0 s. A 20-
day hyperbolic ramp function is applied to the open boundary forcing. Variable Coriolis force is
applied. The bathymetry from ec2000v2d is taken as the digital elevation model (DEM) for the
INTR and FIN meshes.

5. INITIAL SIMULATION

An initial simulation is executed over an existing mesh, ec2000v2d [29], the boundary of which
is presented in Figure 1(a) (the mesh itself is too dense to be presented here). The resolution of
ec2000v2d is based upon the wavelength to grid size ratio and topographic length scale [8–10];
it was developed for the generation of a tidal constituent data base for the WNAT model domain.
Mukai et al. [29] selected a target wavelength to gridsize ratio of ‘100 or more’ and a TLS of
1.0. In addition, elements larger than 25 km were not allowed. Because their mesh was largely
constructed using manual techniques, there were large deviations from the target criteria, usually
toward the conservative side (i.e. nodes were more dense than the target would indicate). Thus far,
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all of the meshes of the WNAT model domain that our research program has produced are derived
from ec2000v2d.

6. INTERMEDIATE SIMULATION

An intermediate mesh is based upon the application of LTEA+CD with the model output of the
initial simulation.

6.1. Estimation of bottom stress

The harmonic output (23 tidal constituents, Table I) from the initial simulation is used to resyn-
thesize time series of currents and water surface elevations. These time series are used in order to
estimate bottom stress for application in LTEA+CD (Equation (9)). A spatially variable, tempo-
rally averaged bottom stress is estimated by computing, for each node of the mesh, the mean value
of �, calculated at discrete time steps over the first spring–neap cycle in a tidal epoch. We use

Table I. Tidal constituents (names, frequencies, and periods) included in harmonic
analysis of ADCIRC model results.

Frequency Period Node Area
Tidal constituent (rad/s) (h) Nodes fraction (%) fraction (%)

NOT CALCULATED 25962 10.20 5.70
STEADY 0.000 000 000 000 000 15244 5.99 6.04
MN 0.000 002 639 203 022 27.55 da 825 0.32 0.50
SM 0.000 004 925 201 824 14.77 da 3828 1.50 1.40

* Q1 0.000 064 958 541 130 26.87 81 0.03 0.31
* O1 0.000 067 597 744 150 25.82 8346 3.28 2.53

P1 0.000 072 522 946 000 24.07 198 0.08 0.73
* K1 0.000 072 921 158 360 23.93 23239 9.13 7.03

MNS2 0.000 132 954 497 700 13.13 0 0.00 0.00
2MS2 0.000 135 593 700 700 12.87 198 0.08 0.00

* N2 0.000 137 879 699 500 12.66 899 0.35 0.66
* M2 0.000 140 518 902 500 12.42 154366 60.64 67.93

2MN2 0.000 143 158 105 500 12.19 1 0.00 0.00
* S2 0.000 145 444 104 300 12.00 9628 3.78 5.91
* K2 0.000 145 842 317 200 11.97 384 0.15 0.37

2SM2 0.000 150 369 306 200 11.61 23 0.01 0.00
MN4 0.000 278 398 602 000 6.27 12 0.00 0.00
M4 0.000 281 037 805 000 6.21 3657 1.44 0.27
MS4 0.000 285 963 006 800 6.10 442 0.17 0.01
2MN6 0.000 418 917 504 500 4.17 382 0.15 0.04
M6 0.000 421 556 707 500 4.14 5745 2.26 0.49
MSN6 0.000 423 842 706 300 4.12 156 0.06 0.01
M8 0.000 562 075 610 000 3.11 716 0.28 0.05

Harmonic results for those constituents marked with an asterisk (*) are applied in the model forcing. The right
three columns show (1) the number of nodes (of ec2000v2d), (2) the node fractions, and (3) the area fractions
of the mesh for which a given tidal constituent determines the target element size.
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Figure 4. (a) Bathymetry of the ec2000v2d mesh. This data set is also used as the digital elevation
model (DEM) for the other meshes. In the lower range, the scale is quasi-logarithm. (b) Logarithm of
average bottom stress, s−1, computed from the ec2000v2d run. The variation in bottom stress generally

demarcates bathymetric features.

a time step equal to one-twentieth of an M2 cycle, equivalent to half an M10 cycle; M10 is the
‘fastest’ tidal constituent in the harmonic analysis (Table I). A minimum value of �=10−11 s−1

is imposed where a lower value is computed. This value of 10−11 s−1 is arrived at by computing
� everywhere and examining the minimum non-zero average � over the entire mesh; 10−11 s−1 is
the next lowest power of 10. At each time step, � is computed by the hybrid quadratic formulation
(Equation (9)).

The estimated values of bottom stress are reflective of bathymetric features of the mesh. This
can be ascertained by an examination of Figures 4(a) and (b), where Figure 4(a) shows bathymetric
contours in increments of 1000m down to the 1000m contour (and in quasi-logarithmic increments
in shallower regions) and Figure 4(b) shows contours of bottom stress in logarithmic increments.
Note, for example, the demarcation of Blake’s Escarpment, the continental shelf (approximately
the region shoreward of the 200m contour), and the Bahamas in both Figures 4(a) and (b).

In the deep, most of the bottom stress values are around 10−8 s−1, increasing to (relatively) high
values in very shallow water; the highest values are on the order of 0.01s−1, consistent with the
typical range of depths and current speeds. For comparison, we present computed bottom stress
values, �, in Table II. This table shows values of � as a function of water depth, H , and current
speed—in the table, the log of current speed in m/s is given (e.g. log1m/s=0. log0.1m/s=−1).
Table II also shows the value of C f computed from the hybrid quadratic friction formulation,
equal to C f min times the term raised to the �/� power in Equation (9), as well as the ratio
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Table II. Variation of bottom stress (�) with total depth and current speed, according to the
hybrid quadratic bottom friction formulation.

log (current speed,m/s) log(�, S−1)

H (m) C f /C f min C f −4 −3 −2 −1 0

1 2.15 0.0054 −6.3 −5.3 −4.3 −3.3 −2.3
2 1.71 0.0043 −6.7 −5.7 −4.7 −3.7 −2.7
5 1.26 0.0031 −7.2 −6.2 −5.2 −4.2 −3.2
10 1.02 0.0026 −7.6 −6.6 −5.6 −4.6 −3.6
20 1.00 0.0025 −7.9 −6.9 −5.9 −4.9 −3.9
50 1.00 0.0025 −8.3 −7.3 −6.3 −5.3 −4.3
100 1.00 0.0025 −8.6 −7.6 −6.6 −5.6 −4.6
200 1.00 0.0025 −8.9 −7.9 −6.9 −5.9 −4.9
500 1.00 0.0025 −9.3 −8.3 −7.3 −6.3 −5.3
1000 1.00 0.0025 −9.6 −8.6 −7.6 −6.6 −5.6
2000 1.00 0.0025 −9.9 −8.9 −7.9 −6.9 −5.9
5000 1.00 0.0025 −10.3 −9.3 −8.3 −7.3 −6.3
10 000 1.00 0.0025 −10.6 −9.6 −8.6 −7.6 −6.6

Presented are logarithms of bottom stress versus water depth, H , and logarithm of current speed.
Note: C f min=0.0025,Hbreak=10.0m,�=10, and �=1/3.

C f /C f min. Note that our selection of 10.0m for Hbreak causes C f /C f min to increase toward
shallower depths beginning at about 10.0m of depth. The minimum bottom stress shown in Table II
is 10−10.6≈3×10−11 s−1 (for a depth of 10 000m and a speed of 10−4m/s) while the maximum
value shown is 10−2.3≈5×10−3 s−1 (for a depth of 1 m and a speed of 1m/s).

Alternatively, the linearized momentum equations could be solved for �, but this introduces
two ambiguities, namely how to handle the case when velocity, appearing in the denominator, is
zero, and how to reconcile the two equations for momentum and two values for � into a single
value.

6.2. New boundary definition

A new mesh boundary (Figure 1(c)) is defined by manually editing the boundary points of the World
Data Bank II coastline definition [31] (Figure 1(b)), with reference to the ec2000v2d boundary.
Although there is some ambiguity in the manual process, the following principles were applied.
Manageable sections of the boundary were created; vertices of each section were redistributed
at a target spacing of 1000m (a typical segment of coastline from the World Data Bank II data
set is about 500m length). The number of sharp angles is minimized; where possible, changes in
bearing are limited to 15◦ or less. Embayments less than about 7 km across are eliminated. Small
protrusions (long dimension less than about 7 km) are eliminated or smoothed over. The 7 km
criterion is based on the diameter of a circle circumscribing a regular 24-gon (interior angles are
345◦ =360◦–15◦) having side length 1000m. Ripples, consisting of alternating protrusions and
embayments, are eliminated. Elimination is generally achieved by filling in the shallow (in the
lateral direction), though perhaps wide (wider than 7 km) embayments, although where this would
cause a large-scale distortion in the geometry, the adjacent protrusions are eliminated or smoothed
over instead. It is also noted that the new boundary was constructed without regard for the location
of tidal stations.
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The result is a boundary that is smoother than that of ec2000v2d has slightly more detail (except
for the Louisiana coast, which is the area of interest for ec2000v2d), including some additional
islands, although some islands that appear in ec2000v2d do not appear in the new boundary,
consistent with the principles discussed (cf. Figures 1(a) and (c)).

It is apparent that an automatic process for boundary simplification is needed; however, we are
aware of none suited to our desire to control for curvature. In addition, such a process would have
numerous free parameters, as evidenced by our criteria. The manual editing required the primary
author about 40 h to complete; this corresponds to a rate of over 900 km of coastline per hour!
Note that boundary definition is really separate from LTEA+CD, and that we could have used an
existing boundary. We opted not to use the ec2000v2d boundary because of the presence of sharp
corners and bumpiness that may place constraints upon the meshing algorithm so as to violate the
target elements sizes.

Note that this NEW mesh boundary determines the shape of the boundary only, not the distri-
bution of nodes along the boundary. The distribution of nodes throughout the domain, including
the boundary, is determined by LTEA+CD.

6.3. Intermediate mesh

Normalized target element sizes for INTR are computed by assuming a=1 (Equation (4)). Note
that the tidal constituents are considered separately as in [1, 18], and that 23 constituents are used
to compute 23 data sets of �∗. However, In order to capture nonlinearities that were not part of
the work of [1, 18], a single nonlinear simulation with seven tidal constituent forcings produces
a tidal signal that is analyzed for 23 tidal constituents. Therefore, each of the tidal constituents
has had the opportunity to interact with the others. For this reason, the simulations conducted
here and the resulting target element sizes are expected to be more reflective of the physics. A
final set of normalized target element sizes is determined by selecting, for each location, min(�∗)
from among the 23 data sets, and smoothing the data with a Gaussian smoothing algorithm, the
effect of which is shown in Figure 5. The scale factor a is chosen such that the maximum ratio of
adjacent element areas [1] in the resultant mesh is 2 (big:small). Based upon visual inspection, the
resultant mesh matches the new boundary well. There are 218 001 nodes and 420 531 elements in
INTR (Table III), 14% fewer than in ec2000v2d. In some places, INTR is resolved just enough to
represent the domain geometry.

In our Gaussian smoothing algorithm, a weight function, the Gaussian distribution, Aexp(−x/
2�2), is applied to D. The parameters of the Gaussian weight function are set so that one standard
deviation, �, coincides with the mean element size (length) about a given node. Note that x is the
distance from the node at which the smoothed value is to be computed and A is set such that the
sum of all weights is unity. Values from nodes further than three elements away from a central

Table III. Properties of meshes.

Element sizes (m)

Mesh Nodes Elements Time step (s) Small Large

ec2000v2d 492182 254565 4 191 26519
INTR 420531 218001 4 183 69496
FIN 867529 444910 4 644 78506
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(a) (b)

Figure 5. Target element sizes (log of normalized value) derived from the ec2000v2d run:
(a) raw values and (b) smoothed values.

node are not used to compute a smoothed value of D. Again, Figure 5 shows the effect of the
smoothing algorithm. Figure 5(a) displays the logarithm of the normalized target element size,
computed by dividing all values of D by the smallest value of D. Note the noise evident in the
normalized data. Figure 5(b) displays the smoothed values computed by applying our smoothing
algorithm to the data of Figure 5(a). Note also that our selected value of �2 results in smoothed
data that still represent the main features of the unsmoothed data.

The application of more advanced smoothing techniques would be expected to produce better
results than simple Gaussian smoothing, particularly because Gaussian smoothing ignores signif-
icant local, directional variation in localized truncation error that are the result of, for example,
the presence of a shipping channel (one would want the smoothing algorithm to smooth only
along the channel, not across it). Note that the Gaussian smoothing applied herein is distinct from
that applied by Hagen et al. [26], whose smoothing algorithm treated the target element sizes
as maximum acceptable values, and limited the gradient of the smoothed element sizes, working
outward from local minima.

The relative influence of the terms involving �, f , and � in the RHS of Equation (7), which
determines the distribution of target element size, is location dependent. The � and f terms are
significant throughout the domain, whereas the � terms, representing the influence of bottom
stress, are significant only in the shallower areas. Here, significance indicates that the ratio of
the magnitude of the terms in question to the total magnitude of all the terms on the RHS of
Equation (7) is at least 10%. Figure 6 depicts graphically the influence (i.e. the ratio mentioned
in the previous sentence) of the three groups of terms. Note that the influence of a group of terms
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Figure 6. Influence of terms involving (a) �, (b) f , and (c) �, for the M2 tidal constituent. Influence
is computed as the ratio of the magnitude of the applicable terms to the magnitude of the total RHS
of Equation (7). Terms involving � and f are relatively important throughout the domain, while terms
involving � are relatively important only in the shallower areas where bottom stress is greater. Influence
can be greater than one (100%) because the terms on the RHS of Equation (7) may cancel each other.

can exceed 100%, since terms may cancel one another. Note also that the influence of the Coriolis
force ( f terms) being on the same order as to that of the � terms is consistent with the fact that
� (2	/12.42h) and f (2	/12.00h times the sine of latitude, where the minimum latitude is about
8◦N in the WNAT model domain) are similar in magnitude.

The dominance of various tidal constituents in determining the target element size is given in
Table I and in Figure 7. In the table, given a tidal constituent, the number of nodes of ec2000v2d
for which that tidal constituent dominates is listed, along with the fraction of nodes as a percentage.
Table I also lists the area over which a given tidal constituent dominates the determination of target
element size, where the area associated with a node is approximated as being proportional to the
square of the mean length of element sides that converge at that node.

In Figure 7, we show the nodes for which a particular tidal constituent dominates the determi-
nation of target element size. Together, they represent about 87% of the area of the WNAT model
domain. M2 is the dominant tidal constituent in the determination of target element size. However,
there are certain broad regions over which other tidal constituents dominate. For example, K1 tends
to dominate a region west of Cuba and northeast of the Yucatan Peninsula. Figure 7 illustrates the
importance of considering multiple tidal constituents in applications of LTEA+CD.

Figure 8 shows details of INTR (left) and, for comparison, ec2000v2d (right). Note that there
are only three elements between Ft. Desoto (the island at left) and the mainland, and that the
resolution provided by INTR seems to be just enough to warrant the inclusion of Ft. Desoto as a
no flow boundary (as opposed to meshing over it or connecting it to the mainland). The minimal
representation of this area by INTR reflects the effects of the parameter a. The selection of a
particular a is, again, arbitrary, but the value selected approaches a ‘minimally’ acceptable value.
A greater value would produce a coarser mesh, in which these detailed features would potentially be
obliterated.
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Figure 7. Nodes for which a particular tidal constituent: (a) M2; (b) K1; (c) STEADY; or (d) S2 dominates
the determination of target element size.

7. FINAL MESH

Target element sizes for FIN are derived from a simulation over INTR, by applying LTEA+CD
(Equation (4)) with bottom stress estimated from the simulation results over INTR (contours of
bottom stress for either simulation overlie each other). In addition, a minimum element size of
1000 m was specified in order to prevent the number of nodes and elements from being too much
greater than ec2000v2d (the unconstrained target element sizes produce a mesh of about 700 000
nodes and 1 400 000 elements). There are 444 910 nodes and 867 529 elements in FIN, about 75%
more than ec2000v2d.
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Figure 8. The INTR mesh (left) is, in some locations, just adequate to represent domain geometry. Ft.
Desoto (the island) is separated from the mainland by three elements. The INTR mesh contains slightly

more detail in comparison to ec2000v2d (right).

We may also compare the meshes themselves (Figures 9 and 10). In general, ec2000v2d contains
the highest resolution in the deeper parts of the domain while FIN contains the highest resolution
in the shallower waters. The coarsest mesh tends to be INTR, except in very deep water, where
FIN is coarser, and in select coastal regions, where ec2000v2d is coarser.

Figure 9 represents the resolution of (a) ec2000v2d, (b) INTR, and (c) FIN in terms of element
size (average side length) with a quasi-logarithmic scale. The coarsening of the deep ocean is
evident in comparing INTR and FIN to ec2000v2d, while the resolving of the continental shelf
break becomes more pronounced (note shelf break along the North American Atlantic coast).

In Figure 10 we present the resolution of the three meshes relative to one another. Figure 10(a)
shows which of the three meshes has the highest resolution (the minimum element size) for a
given location. The map is based upon grid sizes computed as the average length of element sides
coinciding with a common node. These values are then averaged over a regular grid (the pixels of
a screen image). Likewise, Figure 10(b) shows which of the three meshes has the lowest resolution
(the maximum element size). The ec2000v2d mesh possesses the highest resolution in the deeper
waters. Along the Atlantic coast, the continental shelf break is generally most well resolved by
FIN. In the deeper regions of the mesh, FIN is the coarsest of the three meshes; ec2000v2d is
coarsest in some areas of the Bahamas and between many islands of the Antilles.

8. TIDAL STATIONS

We use for comparison the tidal database assembled by Kojima [32], consisting of tidal elevations
and phases of tidal constituents and 203 stations. Of those 203, Kojima [32] found that 150 were
suitable for making solution comparisons among runs with several different meshes. He eliminated
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Figure 9. Element sizes (km) for: (a) ec2000v2d; (b) INTR; and (c) FIN meshes.
Note the quasi-logarithmic scale.

Figure 10. These maps indicate, for a given location, which of the three meshes possesses: (a) the highest
resolution (minimum element size) and (b) the lowest resolution (maximum element size).

stations from among the 203 that were (a) located within a bay, inlet, or canal that is not described
by one or more of the three meshes, (b) located in an element that went dry (at any time, for
any duration) during the period over which harmonic analysis was performed, or (c) influenced
by freshwater flow. In the present study, three additional stations went dry during the period of
harmonic analysis. Therefore we are left with 147 stations at which comparisons may be made;
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summary statistics are prepared for these stations, but not for individual stations, since we are
interested in overall performance, not performance at particular stations. Additionally, consistent
with a discussion by Werner [33], we have confirmed that the mean square error over variance
(MSE/VAR, details below) statistic applied here is sensitive to the duration and starting point such
that for a particular station, the outperformance of one model by another is dependent upon these
parameters. Grouping stations reduces the likelihood that one model will outperform another for
our period of analysis, but not over all time.

9. MODEL COMPARISON

Resynthesized tidal signals form the bases of our comparisons. Historical signals are resynthesized
from all available tidal constituents, and modeled signals are resynthesized from all 23 model
output tidal constituents. We note that the sets of historical and model tidal constituent frequencies
are different; however, when resynthesized, both are representations of the actual tidal signal.

Three error measures are given. For each, only the first spring-neap cycle of a tidal epoch is
considered, and a one-minute time step is applied. The first error measure is the mean square error
divided by the population variance of the historical data:

MSE

VAR
= SSE

N×VAR
=
∑

t (Histt −Modt )2∑
t (Histt −Hist)2

(10)

where N is the number of points of comparison. The second and third error measures are computed
by shifting the model resynthesized tidal signal in time by increments of one time step (one-minute)
and selecting the shift that produces the minimum SSE and therefore the minimum MSE/VAR.
The second error measure is therefore MSE/VAR as computed after the shift, while the third error
measure is the amount of the shift (absolute value, units of time). Hagen et al. [26] applied a
similar method in order to distinguish error related to phasing and error related to the wave heights.
The approach taken here to compute phase shift lends itself to automatic computation, which we
have employed.

The MSE/VAR statistic is equivalent to the square of relative amplitude error for a sinusoidal
tidal signal having zero phase error, 
�, where relative amplitude error is 
A=|AHist−AMod|/AHist.
For errors in phase only, for phase errors up to about 90◦(	/2),MSE/VAR≈
�/60◦ =(3/	)
�.
More generally, MSE/VAR≈
2A+
2�, for 
A�0.5 and 
��30◦ =	/6.

10. RESULTS

We evaluate the performance of the models using the MSE/VAR statistic, averaged over the stations
corresponding to each of three groupings, shown in Figure 11. Each group of stations contains
at least three stations. Each group of stations is given a unique alphanumeric label; these labels
are associated with a group name, also shown in Figure 11 along with the number of stations
(in parentheses) comprising the group. The stations are grouped according to major geographical
features (i.e. coastline shape, bathymetry) and, to a lesser extent, out of consideration for the
geographic dependence of the tides (e.g. along the Atlantic coast of North America, the tides are
semi-diurnal, and transition to mixed tide, then to diurnal tides as one moves clockwise around
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Figure 11. Station groupings; each individual station is represented by a solid dot (•). Statistics
(MSE/VAR and phase shift) are averaged over stations in the groups shown. There are three
different groupings, each for a different level of consolidation. Numbers in parenthesis indicate

the number of stations in each group

the Florida peninsula and onto the Florida panhandle). The line segments demarcating the station
groups are meant only to indicate which stations belong to which group, and do not themselves
have meaning beyond this.

Examination of MSE/VAR for three different groupings of stations—in Figure 12 and in
Table IV—indicates that there is no overall difference among the three models. Note how the
symbols for the three plotting areas typically overlap one another. In fact, the means of MSE/VAR
values for all of the stations considered differ among the three simulations only in the fourth
decimal place, (full tabulation of data is omitted here for the sake of brevity); for comparison,
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Figure 12. Summary statistics of MSE/VAR (top), adjusted MSE/VAR (middle), and phase shift (bottom)
for station groups a–u. There seem to be no overall differences in performance among the three meshes.
For particular station groups, there are some notable differences: Tampa Bay and Chesapeake Bay (station

groups n and g). The station groups are arranged in descending order (roughly) of MSE/VAR.

Table IV. Summary statistics for ec2000v2d (EC), INTR, and FIN runs.

MSE/VAR Adjusted MSE/VAR Phase shift

Station group EC INTR FIN EC INTR FIN EC INTR FIN

1 0.0883 0.0916 0.0906 0.0370 0.0366 0.0371 21 22 21
2 0.0225 0.0225 0.0225 0.0136 0.0136 0.0136 10 10 10
3 0.1352 0.1398 0.1388 0.1103 0.1138 0.1133 27 28 27
4 0.1208 0.1137 0.1148 0.0838 0.0812 0.0822 28 26 26
5 0.0970 0.1024 0.1055 0.0681 0.0669 0.0690 21 22 23

A 0.0879 0.0943 0.0932 0.0367 0.0362 0.0365 21 23 22
B 0.0201 0.0202 0.0200 0.0106 0.0106 0.0106 10 10 10
C 0.0332 0.0333 0.0334 0.0216 0.0215 0.0215 11 11 11
D 0.0144 0.0145 0.0146 0.0110 0.0111 0.0111 8 8 8
E 0.0920 0.0843 0.0840 0.0559 0.0610 0.0619 23 20 19
F 0.1203 0.1128 0.1139 0.0816 0.0788 0.0798 29 27 27
G 0.0952 0.0954 0.0955 0.0943 0.0945 0.0946 4 5 4
H 0.1774 0.1798 0.1786 0.1526 0.1542 0.1532 31 32 32
I 0.0970 0.1024 0.1055 0.0681 0.0669 0.0690 21 22 23

Mean 0.0980 0.0983 0.0982 0.0602 0.0597 0.0602 23 23 22

Mean values are computed by giving all stations equal weight.
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the MSE/VAR values are precise to only three significant figures, based upon the precision of the
historical data (±0.0005m and ±0.005◦ for each tidal constituent).

Plots of adjusted values of MSE/VAR show even less variation among station groups. Only
Tampa Bay (station group n) and Chesapeake Bay (station group g) show any appreciable difference
among the three simulations.

Tampa Bay exhibits less error for both INTR and FIN, in comparison to ec2000v2d. This is
likely due to the increased resolution there; also the boundary definition is smoother and contains
an island not present in ec2000v2d (Figure 8). We emphasize that the increased resolution is due
to the application of LTEA+CD and not due to any manual enhancement of resolution there.

When stations are gathered into more regional groups, there is almost no distinction among the
three meshes (Table IV).

11. DISCUSSION

We have demonstrated the applicability of LTEA+CD to a large-scale domain having detailed
features on the order of 1–10 km. LTEA+CD allows the computation of target element sizes over
the entire domain, including the boundary. These target element sizes were applied in the mesh
module of SMS to produce automatically the corresponding meshes.

LTEA+CD has the potential to provide target element sizes for a mesh having fewer nodes
than an initial mesh, while performing similarly in terms of the solution. Results indicate that the
INTR mesh is an improvement over ec2000v2d because it contains 14% fewer nodes and elements
and is, overall, equally skilled in producing elevation tides.

This paper has shown how LTEA+CD may be applied effectively to produce meshes that are
as accurate or are more accurate than those produced with other, subjective methods. Because
LTEA+CD is applicable throughout the model domain, the method enables the nearly automatic
production of efficient and accurate meshes over realistic domains, as demonstrated over the large-
scale WNAT model domain. Only a minor flaw (resulting in the generation of correctible errors in
the mesh adjacent to the boundary) in SMS prevented the fully automatic meshing of the WNAT
domain.

We would expect that inclusion of additional coastline detail will influence the results produced
by LTEA+CD and therefore the corresponding mesh. For example, Blanton et al. [34] showed
that the inclusion of the estuary/tidal inlet complex in the South Atlantic Bight promoted a more
realistic description of shelf flow in an ADCIRC model. Since our domain has no particular area
of interest, we have not included such details.

Perhaps the limitation imposed upon the minimum element size in the FINmesh precludes it from
performing better than either of the other two meshes, which have elements smaller than 1000m
in certain locations. Lifting the imposition of the 1000m minimum element size is impractical
with regard to our emphasis here on an application. Doing so results in meshes having over one
million elements—too many, in our judgment, to be practical for our computing facilities.

Our experiments, including those presented in this paper, have not produced a convergent
series of meshes although an iterative mesh generation method has been applied. In preliminary
trials, meshes in a series produced iteratively show that in regions of relatively complicated flow,
proportionately more and more nodes are demanded by LTEA+CD, and vice versa. This is not
a desirable property of LTEA+CD; however, it is consistent with the fact that representation of
relatively complicated flow fields requires relatively high resolution. While we have not found

Copyright q 2008 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluids 2009; 60:237–261
DOI: 10.1002/fld



258 D. M. PARRISH AND S. C. HAGEN

a means of causing the meshes to converge, we have, in another paper [1] and for a simplified
case, demonstrated solution convergence under iterative application of LTEA−CD (note the minus
sign).

LTEA+CD surpasses the capabilities of existing mesh generation techniques by combining the
idealism of localized truncation error analysis with the power of complex derivatives resulting in
a new, efficient target element size calculator that is applicable not only on the interior of the
domain, but also at the boundary (LTEA fails within about four elements of the boundary), so that
target element sizes may be computed for bodies of water containing complicated boundaries.

LTEA+CD accounts for Coriolis force and variable bottom stress in the target element size
calculator itself. Both Coriolis force and bottom stress are important factors under LTEA+CD. Both
provide significant influence of the target element sizes; Coriolis force is significant throughout
the WNAT model domain, while bottom stress is significant only in shallow waters, such as the
continental shelf.

Near the domain boundary, nonlinearities become more important. LTEA+CD accounts for
all nonlinearities indirectly, namely by analyzing all tidal constituents (including over tides and
shallow water tides), which, in turn, have the opportunity to interact with one another in a fully
nonlinear simulation.

LTEA+CD provides the means to determine automatically target element sizes and, with the
aid of a mesh generator such as SMS, to generate automatically an actual mesh.

In the present study, ADCIRC and its discrete form of the momentum equations has been applied
in developing LTEA+CD. Therefore Equation (7) should be applied only to modeling problems
having similar mathematics. However, it is expected that the principles of LTEA+CD may be
applied to other models.

Target element sizes computed with LTEA+CD are scaleable through an arbitrary parameter a.
Herein, a single, domain-wide value of a is applied to the generation of each mesh. However,
one may also vary the parameter throughout the domain, providing enhanced resolution in an area
of interest, for example. Herein, an automatic process for the determination of a has also been
developed and used with success.

12. CONCLUSIONS

We recommend that tidal modelers consider applying LTEA+CD to the automatic construction
of FE meshes for tidal model domains. Furthermore, indications are that LTEA-based meshes are
appropriate for storm surge applications—cf. [35, 36]; therefore it is also recommended that storm
surge modelers consider LTEA+CD when developing meshes for their model domains.

These LTEA+CD-based meshes are reflective of the flow field and of the bathymetric features
of the domain, and produce accurate results. They account for physical processes, namely bottom
stress and Coriolis force, unlike meshes produced with other mesh generation criteria.

Herein, LTEA+CD has been demonstrated to produce meshes having reduced numbers of
elements compared to initial high-resolution meshes. The reduction of the number of elements with
the maintenance of accuracy should benefit studies in which multiple simulations must be performed
as well as applications in operational environments where quick turn-around time is critical.

Although LTEA+CD has been herein applied a posteriori, it may be applied a priori if sufficient
measurement-based data (WSE and velocity fields) are available; measurements may be taken
from the field or from physical models. We envision a future in which depth-integrated velocities
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over the globe could be measured via remote sensing technology. A resultant data set could be
used in an application of LTEA+CD. It is already possible to measure not only depth-integrated
velocities, but velocity profiles also by using acoustic Doppler current profilers; Visbeck [37]
provides an example application. Mollo-Christensen et al. [38] estimate ocean current velocity
using an infrared image. Crocker et al. [39] discuss some of the difficulties related to estimating
surface currents from infrared and ocean color satellite imagery.

Since we are now able to include locally variable bottom friction and are able to compute the
target element sizes at and near the boundary, it makes sense to extend the application of LTEA+CD
into coastal water bodies such as an estuary. Just such applications are part of our continuing
research. The inclusion of coastal features such as smaller embayments (e.g. the estuary/tidal inlet
complex of the South Atlantic Bight) flows logically from the demand of LTEA+CD for more
resolution in those areas.
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